If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=-16t^2+64t+8
We move all terms to the left:
10-(-16t^2+64t+8)=0
We get rid of parentheses
16t^2-64t-8+10=0
We add all the numbers together, and all the variables
16t^2-64t+2=0
a = 16; b = -64; c = +2;
Δ = b2-4ac
Δ = -642-4·16·2
Δ = 3968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3968}=\sqrt{64*62}=\sqrt{64}*\sqrt{62}=8\sqrt{62}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{62}}{2*16}=\frac{64-8\sqrt{62}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{62}}{2*16}=\frac{64+8\sqrt{62}}{32} $
| 15y=4y | | 4x-21=X+30 | | z/5-2/z=6z+7/30 | | 4(2x+5)=120 | | 9a+4=a-2(3a-1) | | 10x+4=144 | | 3(2x+3)=14x+21 | | -2x-3x+18=-x+2 | | x3+9x2=0 | | 4+8d=20 | | 50=-10x+110 | | n-8(n-7)=91 | | 32-n=10 | | 3. 7y+22=71 | | 6/n=21 | | -2x-3+18=-x+2 | | (5x+6)+(4x+3)=180 | | (5x+6)+(5x+3)=180 | | 21x+9=180 | | -2x-3(x-6)=1/3(-3x+6) | | 4^(x-3)=128 | | -4x-5=4x=11 | | 153=8n+64 | | (2)/(3)a+2=(1)/(3)(4a+1) | | 7x²+14=0 | | 2+4n=56 | | 19.24/25=x | | 2/3p+6=4 | | 2s+1=4 | | 8x+7+(-13)=90 | | 100-12k^2=100 | | x/26=0.74 |